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Supplementary Text 
 
This supplementary text (ST) contains the details of the stochastic model used to 
extract information from the experimental data. More importantly, it provides the 
framework for the stochastic gene activation analysis within the positive feedback 
loop. This ST is divided into three parts: first, we derive the equations for Krox20 
production. In the second part, we provide details on the values used for the main 
parameters. In the third part, we present a deterministic as well as a stochastic analysis 
of Krox20 activation within the regulatory feedback loop. 
 

1. Mathematical model for Krox20 transcriptional regulation 

1.1. General model description 

Krox20 expression is initially zero. During a transient initiation phase that lasts for a 
time , a Krox20-independent production mechanism allows the activation of the 
autoregulatory loop. After this initiation phase, Krox20 production relies solely on 
autoregulation (Fig. 4A). During initiation, in addition to autoregulation, Krox20 
mRNA is produced with a supplemental Poissonian rate . Each mRNA molecule is 
degraded with a Poissonian rate  and leads to the production of Krox20 proteins 
with an effective Poissonian production rate . Each Krox20 protein is degraded with 
a rate  and can bind to element A that has Nb =4 binding sites. We assume that the 
state of element A can be characterized by the number s=0, 1, 2, 3, 4 of bound Krox20 
molecules. The autoregulatory production of Krox20 mRNA occurs with Poissonian 
rates  that depend on the state  of element A, where  is the maximal 

production rate and is a vector that describes the modulation due to the state of 
element A. Binding and unbinding of Krox20 to element A are described by state 
dependent binding and unbinding rates  and .  
 
The full system is characterized by three variables: the state  of element A, the 
number  of Krox20 mRNA and the number  of unbound Krox20 proteins. The 
joint probability  to find element A in state  with Krox20 mRNA 
molecules and  free Krox20 proteins satisfies the Master equation (Schuss, 1980) 
  

 

€ 

dps
dt
(m,n,t) =Φsps(m −1,n,t) + (m +1)Ψps(m +1,n,t) − (Φs +mΨ)ps(m,n,t)

+mφps(m,n −1,t) + (n +1)ψps(m,n +1,t) − (mφ + nψ)ps(m,n,t)
+µs+1ps+1(m,n −1,t) + (n +1)λs−1ps−1(m,n +1,t) − (µs + nλs)ps(m,n,t)

 

  (1) 
 
where the total mRNA production rate is  (  is the 
Heaviside function). The first line in eq. 1 describes the production and degradation of 
a Krox20 mRNA, the second line the production and degradation of a Krox20 protein, 
and the last one is the binding and unbinding of a Krox20 protein to element A.  
Eq. 1 describes Krox20 production due to a single allele in the nucleus. With two 
identical alleles one has to solve the Master equation for the joint probability
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, where  and  denote the states of allele 1and allele 2. Because of the 
symmetry , the marginal probabilities describing the time 
evolution of each allele are identical, and we have  

  (2) 

 
Due to the high dimension of the state space, it is difficult to analyze  

even numerically, and we will therefore study the probability  defined in 
eq. 3 (see below). The most significant difference between the one-allele and the two-
allele situation is the mRNA production rate, twice as high with two alleles. In first 
approximation, we treat the case with two alleles as a single-allele system, but with a 
twice as large mRNA production rate. With this approximation, the marginal 
probability  in eq. 2 satisfies eq. 1, but with doubled production rates  
and . 
 
To study the dynamics of Krox20 production, we shall make the following 
approximations:  first, when the number of free Krox20 proteins is large compared to 
the number of Krox20 binding sites on element A ( with one allele and 

with 2 alleles) we can neglect in eq. 1 the change in the number of free 
Krox20 proteins  due to binding and unbinding to element A, and write  

 

€ 

dps
dt
(m,n,t) ≈ Φsps(m −1,n,t) + (m +1)Ψps(m +1,n,t) − (Φs +mΨ)ps(m,n,t)

+mφps(m,n −1,t) + (n +1)ψps(m,n +1,t) − (mφ + nψ)ps(m,n,t)
+µs+1ps+1(m,n,t) + nλs−1ps−1(m,n,t) − (µs + nλs)ps(m,n,t)

 

  (3) 
 
Second, we assume that binding and unbinding to element A is fast enough compared 
to the time scale where the number of Krox20 proteins changes significantly. In that 
case we approximate , where 

€ 

ps(n) is the steady state 
probabilities to find element A in state  for a given number of Krox20 proteins , 
and  is the probability to find  mRNA molecules and  proteins at time . 
The steady state condition for binding and unbinding from eq. 3 gives

, leading to the steady state distribution 

  (4) 

 
where 

  (5) 

 
Using the probabilities 

€ 

ps(n), we obtain the effective Krox20 mRNA production rates  

  (6) 
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Finally, using the total rate , we obtain for the joint 
probability  the approximated Master equation  
  

 , (7) 

 
from which we can derive the marginal probabilities for Krox20 mRNA molecules, 
Krox20 proteins and the state of element A are  

  (8) 

 
 

1.2. Mean number of Krox20 mRNAs and proteins due to initiation 

To compute the numbers of Krox20 mRNAs and proteins produced due to initiation 
 and , we set  in eq. 3 and switch off the autoregulation loop, and we 

obtain the mean field equations  

  (9) 

 
After a direct integration, we get at the end of the initiation period (at time t = tI) the 
solutions  

  (10) 

 
 

1.3. Numerical evaluation 

Obtaining an analytic evaluation of eq. 1, 3 or 7, with the autoregulatory loop, mRNA 
molecules and proteins, is not at hand with current methods. Furthermore, because the 
final probability that a cell eventually expresses Krox20 depends on the transient 
initiation phase, we have to consider the time development of the system. This 



 5 

analysis is again extremely challenging and not at hand. A time-dependent solution 
for a much simpler autoregulated system consisting of proteins and a single gene that 
switches between two states has recently been presented (Ramos et al, 2011). An 
asymptotic time dependent analysis of a self-regulating system with mRNA molecules 
and proteins, when the mRNA lifetime is much faster compared to the protein 
lifetime, was further investigated in (Bokes et al, 2012a). A steady state analysis with 
mRNA molecules and proteins only, without feedback, can be found in (Bokes et al, 
2012b). 
 
The parameter values that we found (see next section) are such that we could not 
further simplify the system of DNA, mRNA and Krox20. Thus, in order to study the 
exact time dependent probability distribution, we decided to evaluate eq. 1, 3 and  7 
numerically. We truncated the number of mRNA and proteins and integrated the 
truncated system of equations using the EXPOKIT software package (Sidje, 1998). 
During the simulation we monitored and adapted the mRNA and protein truncation 
level to keep the probability loss less than 1%. To simulate the stochastic behavior of 
single cells, we used the Gillespie algorithm (Gillespie, 2005) to simulate the 
chemical reactions underlying eq. 1. We refer to these single cell traces as “molecular 
dynamics simulations”. 
 
All simulations shown in the main text were obtained using eq. 1. Interestingly, even 
for small numbers of Krox20 proteins, we did not observe significant differences 
between simulations performed with eq. 1, eq. 3 or eq. 7, as revealed in Figures S4B 
and S6J. Indeed, significant activation of element A occurs only when the number of 
Krox20 proteins reaches a value around 30-40, which is large compared to the 8 
binding sites. Thus, for a low number of Krox20 proteins, autoregulation has only a 
small impact, explaining the similar results of simulations performed with eq.1, 3 or 
7. 
 
 

2. Parameter estimations 

Equation 1 depends on a large number of parameters summarized in Supplementary 
Table S1. We shall now estimate these parameters using the following strategy: 
whenever possible, we use experimental data. If such a direct parameterization was 
not feasible, we checked the published literature for reliable values. Finally, we 
determined the remaining parameters indirectly using our analysis or simulation 
results. We now provide details on these estimations.  

2.1. Duration of Krox20 initiation  

The duration of initiation phase in the endogenous condition was determined using the 
experimental data from Figure 2K. The red curve corresponds to the amount of 
Krox20 mRNA produced only by initiator elements. The duration of initiation was 
defined as the time along the abscissa between the origin and the peak of initiation, 
which leads to 
  (11) 
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2.2. Krox20 mRNA and protein degradation rates  and  

Transgenic Tg(hsp:mKrox20 )embryos were heat-shocked for 10 minutes at  
and the amounts of mKrox20 mRNA and protein were measured every hour by RT-
qPCR and semi-quantitative western-blotting respectively. An exponential fit of the 
resulting curves revealed mRNA and protein half-lives of  and 

 (data not shown). We therefore used the values  

 

€ 

Ψ =
1
60
min−1     

€ 

ψ =
1
65
min−1 (12) 

2.3. Synergy for mRNA production  

The mRNA production rates  (s=0,…,4) represent the concerted 
recruitment of the transcriptional machinery (PolII and co-enzymes) onto the Krox20 
promoter as a function of the number of Krox20 proteins  bound to element A. The 
vector  describes the modulation of the production rates due to the number of bound 
Krox20 proteins. To determine , we used the relative activities of element A after 
mutations of single sites, as described in the Results section (see Figure 3C,D). 
Element A activity resulting from a single mutation was decreased to 23% in mean. 
Combined mutations of two or three sites essentially abolished element A activity. 
Therefore, in state 0, 1 and 2, the element A-dependent production of Krox20 is null; 
in state 3, the element A drives 23% of the full production that is reached in state 4. In 
our chick electroporation experiments, the activation of the Tg(cA::gfp) reporter gene 
could be considered as saturated since addition of exogenous Krox20 by co-
electroporation did not increase the level of reporter gene in r3 and r5 (data not 
shown). Therefore, the amount of Krox20 proteins was not limiting in these 
experiments, suggesting that cooperative binding events did not interfere with the 
results. The synergy among Krox20 binding sites revealed by our experiment can thus 
be entirely assigned to the concerted recruitment of the transcriptional apparatus. To 
conclude, these results were implemented as  
  (13) 

2.4. Krox20 mRNA production rate , when element A is fully active 

To determine the value of , we first estimated the steady-state number of mRNA 
per cell in wild type conditions. Deep sequencing mouse hindbrain mRNA at E8.5 (Le 
Men et al., in preparation) provided us with relative values of mRNA levels of Krox20 
versus six ubiquitous genes (Hdac1, Hmgb3, Wbp4, Pgm3, Riok3, Eif4e). Absolute 
mRNA values for these ubiquitous genes in mammalian cells were extracted from a 
quantitative analysis by Schwanhäusser and collaborators (Schwanhäusser et al, 
2011). A linear regression curve was drawn between the absolute and the relative 
numbers of mRNA and used to obtain the absolute value of Krox20 mRNA per cell: 
we obtained 7. Since Krox20-positive cells represent approximately one third of the 
hindbrain, we estimated that the average number of Krox20 mRNA per positive cell is 
21. Taking this value for Krox20 mRNA when the two copies of element A are fully 
active, the production rate due to a single allele is  
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  (14) 

2.5. Initiation rate  

Our experiments showed that in the endogenous situation (as opposed to heat-shock 
experiments), when element A becomes fully activated, the maximal Krox20 mRNA 
levels in r3 and r5 are doubled compared to the mutant case with initiation alone (see 
Figure 2K). In mutant conditions the average number of mRNA at the end of 

initiation is 

€ 

m I (tI ) =
2ΦI

Ψ
1− e−Ψt I( ) (see eq. 10), where 

€ 

2ΦI  accounts for two alleles. 

In the endogenous case the average number of Krox20 mRNAs after a long time is 

. Using the experimental result together with  and 
 we obtained  

 

€ 

m A
m I (tI )

= 2⇒ΦI = 0.7ΦA  (15) 

 
In simulations where the initiation is endogenous, we use the values  
and . However, in heat-shock experiments, the initiation strength depends 
on the temperature, and to simulate such conditions, we varied .  

2.6. Krox20 protein translation rate  

Krox20 translation rate was inferred from a recently published work by 
Schwanhäusser and colleagues who have used parallel quantification of mRNA and 
proteins at a genome scale in mouse fibroblasts to determine absolute cell copy 
numbers, the half-lifes and the synthesis rates of mRNA and proteins of over 5,000 
genes (Schwanhäusser et al, 2011; 2013). Considering the 43 zinc-finger transcription 
factors of this study, we calculated that the median translation rate was 34 
proteins/mRNA/hour. We therefore use in our simulations the translation rate  

  (16) 

2.7. Cooperativity coefficients  

To determine the coefficients  defined in eq. 5 we used the data collected in the 
electromobility-shift assays experiments (Figure 3B and S4). In these experiments, at 
steady state, the fraction of DNA fragments that contained at least one bound Krox20 
protein is  

  (17) 

 
where  is the concentration of DNA fragments bound with  Krox20 molecules, 
and  is the overall concentration of DNA fragments in the solution. To compute the 
fraction , we used the following model for binding and unbinding of Krox20 
proteins to element A in wild type condition with Nb=4 binding sites (see also 
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(Gunawardena, 2005) for a similar analysis of multisite protein phosphorylations):  

  (18) 

 
where  are the in vitro forward binding rates, are the in vitro unbinding rates,  is 
the concentration of free Krox20 proteins, and  the overall concentration of Krox20 
proteins. The affinities of all binding sites are the same and only the number of 
Krox20 proteins that are bound to element A is relevant. At steady state, eq. 18 
reduces to a system of non-linear equations for the  that cannot be solved 
analytically. However, the experimental results revealed that a significant fraction of 
bound DNA is only present when Krox20 is abundant ( ), in which case we 
can neglect Krox20 depletion due to binding and use . With this approximation, 
the steady state equations simplify to  
  (19) 
 

where  is the number of proteins per DNA, and  

  (20) 

 
By solving eq. 19 we obtain  

  

and from this we finally find the ratio 

  (21) 

 
We used the experimental measurements of  as a function of  shown in 
Supplementary Figure S5A to fit the values for using eq. 21 for various . With 
data for Nb=2 we fitted  and , then we used these values to fit  with data for 
Nb=3, and finally we used the data for Nb=4 to fit . Using the fitting procedure from 
Matlab, we found  

  (22) 
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There is no indication that binding and unbinding of Krox20 proteins to element A in 
vitro are significantly different compared to the endogenous situation in a cell, and we 
will therefore use the constants to estimate the in vivo coefficient  defined in 
eq. 5. However, since the time scale of the forward binding depends on the mean first 
passage time of a Krox20 protein to find element A (Schuss et al, 2007; Reingruber et 
al, 2009), which itself depends on the complex nuclear organization, this time scale 
could be different in vitro compared to in vivo. We therefore introduced an overall 
factor  that accounts for a change of the time scale in vitro compared to in vivo, 
such that  
  (23) 
 
We do not have experimental data nor values from the literature which could put 
additional constraints on the value of , and we shall estimate  in supplementary 
section 3.2 using numerical simulations.  

2.8. Krox20 binding and unbinding rates  and  

The simulations presented in the SI were obtained using equation 7 that depends on 
the steady state probabilities 

€ 

ps(n) given in eq. 4. To perform simulations of the full 
Master equation 2, or to perform molecular dynamics simulations with binding and 
unbinding events, we additionally specified the binding and unbinding rates  and 
. From steady state experiments we obtained . To estimate  and , we simplified 
the representation the binding and unbinding process and considered that forward 
binding rate does not depend on the state of element A, such that . Thus, the 
cooperativity in results only from the unbinding rates (we used eq. 5)  

  (24) 

 
where we introduced the rate constant  such that .  
In summary, to model binding and unbinding events we used the expressions  

  (25) 

2.9. Summary of the parameters 

Using our own experimental results or relying on the literature, we could estimate the 
values of all parameters except for the forward binding rate  and the ratio . 
Assuming that binding and unbinding to element A is fast compared to the time 
required for a significant change in the number of Krox20 proteins, it is sufficient to 
know  to investigate Krox20 expression. We determined  in supplementary 
section 3.2 using numerical simulations of eq. 7. To perform molecular dynamics 
simulations or to evaluate the eqs.1 or 3, we additionally used 

€ 

λ =1min−1. The exact 
value of is not important as long as is small compared to the time scale at 
which the number of mRNA and proteins changes significantly (around 60 minutes).  
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3. Analysis of Krox20 activation  

 
We investigated how Krox20 initiation and autoregulation determine cell fate. 
Interestingly, after initiation, autoregulation takes over without any basal production 
rate, in which case the state with vanishing Krox20 expression is the only steady state: 
Indeed, any Krox20 expression will eventually vanish due to fluctuations that drive 
the system to the state with zero Krox20 proteins and mRNA molecules. However, for 
a strong autoregulation, the probability for such a drastic event to occur is very small 
and the state with a large Krox20 expression last for a sufficient long time for 
patterning to occur.  
 
To obtain insight into the mechanisms governing Krox20 expression, we will derive 
the deterministic dynamical system for the mean number of proteins underlying eq. 7, 
which we will analyze numerically. 

3.1. Analysis of the deterministic dynamical system 

For the following analysis, we introduce the scaled parameters  
  (26) 

and scaled variables  

€ 

m0 =
ΦA

Ψ
, n0 = m0

φ
ψ
, α = βn0, ε =

Ψ
ψ
, χ =

ΦI

ΦA

 

   

€ 

τ =Ψt, ˆ m = m
m0

, ˆ n = n
n0

 

  (27) 
The numbers  and  of Krox20 mRNA and protein correspond to the average 
values when element A is fully activated, in which case the scaled variables  and 
are of order one. Starting from the expression for  given in eq. 6, we define the 
auxiliary function  

  (28) 

 
such that , where we used . The function f(βn)contains the 
synergy in Krox20 mRNA production (the parameters ξs) and the cooperativity in 
binding and unbinding of Krox20 proteins to element A (the ratios γj). In 
Supplementary Figure S5B, we plotted two examples of for 

€ 

β =1 and 

€ 

β = 0.21
.  represents the normalized production of element A (ranging from 0 to 1) as a 
function of the total number of Krox20 proteins. 
 
We first approximate eq. 7 at first order and we neglect the initiation ( ). We 
obtain the slow-fast dynamical system for the normalized numbers of Krox20 proteins 
and mRNA 

€ 

∂τ ˆ m (τ ) = χθ (τ1 −τ ) + f (α ˆ n ) − ˆ m 

∂τ ˆ n (τ ) =
1
ε

( ˆ m − ˆ n )
   (29) 
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3.1.1. Steady state analysis without Krox20 initiation 
In Supplementary Figure S5C we plot the steady states (fixed points) for which 

(eq. 29) for as function of . We found that there is a minimal value
 such that for  there is only one single fixed point at  (

€ 

αmin

can be computed using the solution  of the equation 

€ 

f '(x)
f (x)

=
1
x

, 

). For  we have a bistable system with two stable 

fixpoints  and  and a saddle point (see Supplementary Figure S5E). For large 
, the asymptotic values  and  correspond to the situation where 

element A is fully activated, as can be seen from the steady state probabilities  for 
large  depicted in Supplementary Figure S5D.  
The condition  implies that a minimal Krox20 mRNA production rate  

  (30) 

is needed for generating a stable state where Krox20 is activated. In that case, there 
are two steady states, leading to a bistable equilibrium. Using the experimental 
finding that the heterozygous rate 

€ 

ΦA = 0.18 min−1 induces a high Krox20 expression 
((Voiculescu et al, 2001) and data not shown), the requirement  results in 
a lower bound for the rate :  

 

€ 

βmin =
αmin

n0
≈ 0.1, (31) 

 
where we used  (we used the values for ,  and  from Supplementary 
Table S1).  
 
To analyze the impact of the initial production on the asymptotic behavior, we used 
the phase space: for  there are two stable fixed points and a saddle point, and 
the separatrix passing through the saddle point separates the two basins of attractions 
associated with each stable points (see Supplementary Figure S5E for 

€ 

α = 40). When 
the initiation is strong enough such that the initial conditions are outside the basin of 
attraction of  , it results in a high Krox20 expression level. In contrast, if 
initiation is too weak, Krox20 expression vanishes. In Supplementary Figure S5F we 
plot the separatrix for different values of : when increases, the basin of attraction 
of shrinks and asymptotically vanishes for large , resulting in an exclusive 
high Krox20 expression level 
 
In summary, in the deterministic approximation, the dynamical system underlying 
Krox20 activation is bistable for . At the cellular level, this bistability is 
reflected in a binary cell-fate choice associated with a high Krox20 level, or Krox20 
expression is not maintained. In the next paragraph we will investigate how this 
bistable cellular behaviour entails bimodality at the cell population level. The 
complete analysis requires accounting for the stochastic production of mRNA, which 
generates large discontinuous jumps in the number of produced mRNA and leads to 
large fluctuations in the number of Krox20 molecules. 
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3.2. Analysis of the stochastic model 

To estimate the unknown ratio , we numerically analyze equation 7 and evaluate 
the impact of initiation and autoregulation on the time evolution of the system. By 
simulating eq. 7, we obtain the probability  that fully describes the system. 
Although the simulations are performed with the variables  and , we present the 
results using the scaled variables  and  to facilitate the comparison between the 
different scenarios. We use the notation  for . The marginal 
probabilities for Kox20 mRNA and proteins and the state of element A are defined in 
eq. 8. The time dependent relations for mean values for  and  are  

  

€ 

ˆ m (t) =
1

m0

mp(m,n,t) =
m,n =0

∞

∑ 1
m0

mp(m,t) =
m (t)
m0

,
m =0

∞

∑

ˆ n (t) =
1
n0

np(m,n,t) =
m,n =0

∞

∑ 1
n0

np(n,t) =
n (t)
n0

,
n =0

∞

∑
  (32) 

3.2.1. Impact of  on the production rate 

In Supplementary Figure S6A-H we analyze Krox20 activation up to a maximal time 

€ 

t = 500 min in heterozygous condition with 

€ 

ΦA = 0.18 min−1, for 

€ 

ΦI = 0.7ΦA  
(endogenous situation, see eq. 15),  and various . By plotting the mean 

 and  as a function of time, we found that for the minimal value the 
expression of Krox20 is maintained (Supplementary Figure S6A,B). This corresponds 
to 

€ 

α ≈ 50 (see eq. 26), which is within the range of the minimal value  for 
bistability. For 

€ 

β > 0.13, the probability distribution of Krox20 

€ 

p( ˆ n )  at time 

€ 

t = 500 min (considered as steady state) is bimodal, with two peaks at zero and close 
to one (Supplementary Figure S6C). This bimodal distribution is a direct 
manifestation of bistability, which is induced by the intrinsic molecular fluctuations 
and is associated with two possible fates, Krox20-positive and -negative. We display 
in Supplementary Figure S6E-G the probability  for three values 

€ 

β = 0.06, 

€ 

β = 0.13 and 

€ 

β = 0.4 . For 

€ 

β = 0.06, the strength of the initiation phase is not enough 
to activate element A, resulting in a fast decay of Krox20, which eventually vanishes 
(Supplementary Figure S6E). For 

€ 

β = 0.13, only a fraction of cells activate element A 
and a bimodal distribution emerges (Supplementary Figure S6F). Finally, for 

€ 

β = 0.4
almost all cells activate element A and the probability distribution becomes unimodal 
(Supplementary Figure S6G). 
 
In Supplementary Figure S6D we plot the state probabilities  to find element A in 
state  at time 

€ 

t = 500 min as a function of . The probabilities for the intermediate 
states s=1,2,3 are negligible, and only the states s=0 and s=4 reach large probabilities. 
The probability to find element A fully activated changes drastically in the range 

€ 

β∈ 0.1; 0.2[ ], which is related to the critical value  found in the 
deterministic system. 
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3.2.2. Estimation of the ratio  

Experimentally we found that the level of Krox20 expression in heterozygous and 
wild type embryos is very similar. To estimate , we therefore constrained  such 
that the expression level in the heterozygous condition corresponds to at least 90% of 
the level in the wild type condition. In Supplementary Figure S6H we plot the ratio 
between the probability (probability of state s=4) to find element A fully activated 
at time  in heterozygous and in wild type conditions as a function of . 
Forβ> 0.20 the expression level in the heterozygous condition is more than 90% of 
the level in wild type condition, which gives the lower bound for . For large  the 
expression levels in wild type and heterozygous conditions are large and robust 
against variations of . However, we found that mouse rhombomere r3 is slightly 
smaller in heterozygous as compared to wild type embryos (Voiculescu et al, 2001), 
suggesting that  is close to the lower bound. We thus concluded  
  (33) 
 
and we used this value in the following simulations.  

3.2.3. A minimal mRNA production rate  is required to maintain Krox20 
expression. 

Previously we showed that a minimal value 

€ 

β ≈ 0.13 is necessary to maintain Krox20 
expression for 

€ 

ΦA = 0.18 min−1 (Supplementary Figure S6A,B). For fixed , 
we searched for the minimal value of  required to maintain Krox20 expression. In 
the deterministic system the minimal  is computed from eq.30. The precision of 
this relationship in the full stochastic system is however unclear. In Supplementary 
Figure S6I,J we show five simulations with ,  and 

corresponding to . By 
choosing  we ensured that Krox20 mRNA and protein levels induced by 
the initiation process exceed the steady state levels due to fully activated element A, 
such that a weak initiation cannot be responsible for the vanishing Krox20 expression 
in Supplementary Figure S6I,J. 
 
For (

€ 

α = 20), Krox20 expression is not maintained and quickly fades 
away after the initiation stops (Supplementary Figure S6I). For   

€ 

α = 40), the expression declines at a slower pace. Finally, for 

€ 

ΦA ≈ 0.11min
−1 (α = 

50), Krox20 expression is maintained, which is consistent with the minimal value for 
α found in the previous section when analyzing the impact of . The rates 

€ 

ΦA ≈ 0.18 min
−1 (heterozygous) and 

€ 

ΦA ≈ 0.36 min
−1 (wild type) are largely above 

this minimum value and are therefore both sufficient to maintain a stable Krox20 
expression. Supplementary Figure S6J displays the probability distribution  for 
the number of Krox20 molecules at the end of the simulation and shows how 
bimodality emerges.  
 
In the deterministic system we found that bistability occurs for . By varying 
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 and , we explored to which extent can also be used in the Master equation to 
estimate the region where random switches occur. This region is approximately given 
by . However, in contrast to the deterministic system, where the phase space 
changes abruptly for , in the stochastic system, changes are smooth due to the 
impact of fluctuations.  

3.2.4. Initiation gradually modulates the fraction of cells that express Krox20. 

To analyze the impact of the initiation strength in wild type conditions, we computed 
the element A activation 

€ 

ps(t = 500 min)  for 

€ 

ΦA ≈ 0.36 min
−1,  and 

 and various  (Supplementary Figure S7A-D). We found that the 
maintenance of Krox20 expression does not depend on  (Supplementary 
Figure S7A), but  gradually modulates the fraction of cells that adopt a Krox20-
positive fate (Supplementary Figure S7B). This behavior is not captured by the 
deterministic dynamical system, where a sharp transition from zero to full activation 
occurs at a threshold value , when the system crosses the separatrix and enters the 
basin of attraction of the large fixpoint. Hence the present stochastic analysis reveals 
that there is a gradual relationship between the level of Krox20 initiation and the 
number of Krox20-positive cells. 
 
The Krox20 protein probability distributions 

€ 

p( ˆ n )  at the end of the simulations have a 
bimodal shape with a peak at (Krox20 is not expressed), and another near 

€ 

ˆ n =1, 
corresponding to cells with fully activated element A (Supplementary Figure S7C). 
Rescaling 

€ 

p( ˆ n )  by the peak value near 

€ 

ˆ n =1 further reveals that the distributions have 
identical shapes (Supplementary Figure S7D). Hence, varying the initiation strength 
only modulates the fraction of activated cells, but not the Krox20 distribution within 
these cells, showing that the initiation process does not introduce additional 
heterogeneity into the Krox20-positive cell population. The expression for 

€ 

p( ˆ n )  for 
can be expressed in the form , where  is the fraction of cells that 

adopt a Krox20-positive fate and  is the steady state probability distribution for 
the number of proteins in a system with mRNA and proteins and constant rates , 

,  and . These distributions are not necessarily Poissonian, see (Thattai & van 
Oudenaarden, 2001; Bokes et al, 2012a).  
 
Next we studied the effect of variations in the initiation time  in the wild type 
condition with 

€ 

ΦA ≈ 0.36 min
−1,  and  (Supplementary 

Figure S7E-H). We found that changing the initiation time  is similar to changing 
the initiation strength : the maintenance of Krox20 expression does not depend on 
the value of  (Supplementary Figure S7E,F),  gradually modulates the fraction of 
cells that adopt a positive fate (Supplementary Figure S7G), and the bimodal 
distributions all have identical shapes (Supplementary Figure S7H). Hence, the 
initiation time and initiation strength similarly modulate the number of Krox20-
positive cells.  
 
Finally, we analyze how the initial conditions determine the cell fate. In the 
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deterministic approximation the position of the initial condition (number of Krox20I 
mRNA and proteins) in the phase space, relative to the separatrix, determines the cell 
fate (Supplementary Figure S5E,F). In the stochastic model the initial condition only 
determines the probability of the cell fate. Here the separatrix of the deterministic 
system is represented by a stochastic separatrix, which is given by the initial positions 
from where each fate is attained with probability ½(Schuss, 2010). In Supplementary 
Figure S7I,J, we plot the state probabilities of element A at time  for two 
initial condition scenarios with zero initiation (

€ 

ΦI = 0): in Supplementary Figure S7I 
we chose zero initial Krox20 proteins and we varied the initial number of mRNA 
molecules ; in Supplementary Figure S7J we vary the initial number of Krox20 
proteins  with zero initial Krox20 mRNA. Supplementary Figure S7I shows that the 
production of a single mRNA leads approximately 5% of the cells to the Krox20-
positive fate, and 8 initial mRNA molecules almost fully activate element A. Hence, 
the transition occurs in a small range of mRNA molecules rendering the system very 
sensitive to changes in the number of mRNA molecules. In Supplementary Figure S7J 
we present the probability by which an initial number of Krox20 proteins induce a 
Krox20-positive cell fate, in which case the activation profile is determined by the 
sigmoid function ). 

3.2.5. Variations in binding cooperativity, synergistic activation and number of 
binding sites 

We explored the consequences of variations in the cooperativity coefficients , the 
synergy coefficients  and the number of binding sites. For fast binding and 
unbinding,  and  affect Krox20 activation in a complex manner, which is 
revealed by the sigmoid function  defined in eq. 28. The shape of (we 
used 

€ 

β = 0.21) as a function of the number of Krox20 proteins  determines the 
steady state and the sensitivity to initiation: the non-zero stable steady state of the 
deterministic model is given by the last intersection of  with the line given by 

€ 

n
n0

, where  (see eq. 26; dotted line in Supplementary Figure S8A,C); the 

sensitivity to initiation is reflected by the position of the saddle point (second 
intersection point).  
 
We now discuss the impact on Krox20 expression for a wild type situation with 

. We started by exploring changes in for various cooperativity 
coefficients . In Supplementary Figure S8A we compare  computed with the 

wild type values  and  (solid line) to cases 

without cooperativity, i.e. uniform coefficients  (dashed lines), where δis 
a scaling factor that modulates the affinity of the four Krox20 binding sites. For low 

( ), the non-zero steady state vanishes (no intersection in Supplementary 
Figure S8A, and no separatrix in Supplementary Figure S8B) and  is not strong 
enough to maintain Krox20 expression. With , the system is extremely sensitive 
and a small initiation level can activate element A (Supplementary Figure S8B, red 
line). A system similar to the wild type situation can be reconstituted with an 
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intermediate value . In this case, even without cooperativity, the sigmoid shape 
of  is conserved (Supplementary Figure S8A) and the separatrix is similar to 
the wild type situation (Supplementary Figure S8B). However, the efficiency of 
activation is reduced (Supplementary Figure S8A). 
 
We then explored the consequences of altering the synergy (Supplementary 
Figure S8C): the no-synergy scenario was computed with . When 
binding cooperativity is maintained, the sigmoid shape of  is largely unaffected 
(Supplementary Figure S8C, compare black and blue curves). However, without 
synergy the activation become more sensitive to low numbers of Krox20 protein and 
therefore to low levels of initiation. In absence of both synergy and cooperativity (in 
this case, the no-cooperativity scenario was computed with ), the 

sigmoid shape is lost and the activation becomes extremely sensitive to initiation 
(Supplementary Figure S8C, green curve). This result shows that synergy is 
absolutely required to maintain a sigmoid shape when binding cooperativity is 
abolished. This can be understood by considering the impact of the intermediate states 
(s=1,2,3). With binding cooperativity, element A is either fully activated or fully 
deactivated (see Supplementary Figure S8D, with cooperativity and without synergy) 
and the impact of the intermediate states remains small independent of the synergy. In 
contrast, in absence of binding cooperativity and synergy, the intermediate states 
attain relatively large probabilities (Supplementary Figure S8E); the system therefore 
loses its bistability. 
 
Finally, changing the number of binding sites, by eliminating one of them operating 
with a high synergy has a dramatic impact on the feedback loop. Indeed, the system is 
then unable to maintain Krox20 expression because the maximal activation state of 
the promoter (ΦA,4) is lost (Supplementary Figure S8F, red curve; see also the 
discussion in section 3.2.3). Hence, masking one of the binding sites, e.g. through 
competitive binding, might constitute an efficient mechanism to abolish previously 
established Krox20 expression. Without synergy, lowering the number of binding 
sites only reduces the efficiency of activation (Supplementary Figure S8G). 
 
To conclude, binding cooperativity and synergy are both required to shape the 
sigmoidal Krox20 activation curve. Loss of either of them may be compensated by 
increasing the affinity of the binding sites for Krox20 or the efficiency of transcription 
machinery recruitment. These compensations would occur at the expense of an 
increased sensitivity to low initiation inputs, making the Krox20 feedback loop much 
more sensitive to fluctuations. 
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Supplementary Figure S1 (related to Figure 1). Krox20 DNA binding specificity 

and design of the autoregulatory rescue. 
(A) Positions of the seven putative Krox20 binding sites along element A and their 

nucleotide sequences in either their wild type element A or mutant element A*. 

Modified nucleotides in the mutant version are indicated in red. 

(B) Schematic representation of the interactions of wild type Krox20 and mutant 

Krox20* with their respective consensus binding sites. Modified amino acids and 

nucleotides in the mutant versions are indicated in red. 

(D)Schematic representation of the autoregulatory loop in the wild type 

situation:Krox20 expression involves two phases, initiation (1) and autoregulation 

(2,3). 

(E) In the Krox20A*/A* mutant, the autoregulation phase is abolished since element A is 

replaced by the mutantelement A*. 

(F) TheKrox20A*/A*mutant can theoretically be rescued by providing a transgene that 

expressesKrox20* in r3 and r5. In this situation, Krox20 is normally initiated (1) and 

activates the exogenous element A driving expression of Krox20*(2,3); in turn 

Krox20* activates A* on the endogenous locus (4), leading to further production of 

Krox20 (5). The rescue is based on a novel, indirect autoregulatory loop. 



Supplementary Figure S2

r3 r5

e.f.
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Supplementary Figure S2 (related to Figure 2). The putative zebrafish element A 
drives specific expression in r3 and r5. 

A pTol2 construct carrying the gfp gene under the control of the candidate sequence 

for the zebrafish element A was injected into zebrafish embryos at the 1 cell-stage. 

Analysis of the fluorescence in 20-somite embryos shows expression of gfp restricted 

to r3 and r5. e.f. : eye field. 
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Supplementary Figure S3 (related to Figure 3). Identification of bona fide 

Krox20 binding sites in element A. 
A radiolabelled DNA probe (25 nM) corresponding to element A was subjected to 

EMSA in presence of bacterial extracts containing Krox20 and cold competitor 

oligonucleotides carrying the seven putative Krox20 binding sites identified in silico. 

Three binding complexes are observed in these conditions (red arrows), suggesting 

that the element A carries at least three sites. The competitors are provided at two 

concentrations (25 and 100 nM). Oligonucleotides corresponding to sites 2, 5 and 7 

severely affect the binding of Krox20 on element A, whereas the site 6 

oligonucleotide competes less efficiently. The other oligonucleotides do not compete. 

The sequences of the competitor oligonucleotides are presented in Supplementary 

Table S2B. 
 



Supplementary Figure S4
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Supplementary Figure S4 (related to Figure 4B). Analysis of the effect of shifted 

initiation inputs in r3 and r5. 
Comparison of the simulations obtained with a single input (red) or with two shifted 

inputs of the same ΦI value for r3 and r5 (green), with the experimental data (grey) of 

Krox20 expression time courses in developing embryos. Solid and dashed curves 

correspond to simulations and measures with and without activity of the 

autoregulatory loop, respectively. In the simulation with two inputs, the first one 

initiates at t=0 and lasts for 80 min and the second one initiates at t=10 min and lasts 

for 130 min.  
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Supplementary Figure S5 (related to ST, sections 2 and 3). Analysis of binding 

cooperativity and of the deterministic dynamical system 

(A) Experimental curves for the ratio of bound Krox20 proteins (colored curves). 

These curves were fitted using ST eq. 21 for Nb=4,3,2 to extract the values of (see 

ST for further details). 

(B) The sigmoid function 

€ 

f (βn) defined in ST eq. 28 as a function of the number of 

Krox20 proteins n for  and . 

(C) Fixpoints 

€ 

ˆ m * = ˆ n * of eq. 40 (with 

€ 

χ = 0) as a function of the critical parameter (

 and  are the scaled values of m, number of Krox20 mRNA, and n, respectively). 

The black and blue points are the stable fixpoints 

€ 

ˆ n 1
* = 0  and , whereas the red 

points are the saddle points . Bistability is achieved for 

€ 

α > αmin ≈ 33.8 . 

(D) Steady state probabilities 

€ 

ps(n) defined in ST eq. 4 of finding element A in state s 

at the stable fixpoint .  

(E) Phase space analysis. The two stable fixpoints 

€ 

ˆ n 1
* = 0  and are indicated in black 

and blue respectively, and the saddle point  is indicated in red. The blue trajectories 

converge versus the large fixpoint, whereas Krox20 expression eventually vanishes 

along the black trajectories. The red curve is the separatrix. 

(F) Separatrix for various values of . The basin of attraction of the fixpoint 

€ 

ˆ m * = ˆ n * = 0  shrinks with increasing . 
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Supplementary Figure S6 (related to ST, section 3). Analysis of the stochastic 

system and determination of the value of the parameter β. 
The results shown in panels (A-H) are obtained from simulations of ST eq. 7 with the 

heterozygous production rate 

€ 

ΦA = 0.18 min−1, , 

€ 

tI = 80 min and various 

. The simulations in (I,J) are obtained with , 

€ 

tI = 80 min,  and 

various  corresponding to 

€ 

α = (20,40,50,60,70)  

(see ST eq. 26). 

(A) Time evolution of the mean number of Krox20 mRNA molecules. The solid lines 

represent the total number of mRNA molecules, the dashed lines the number of 

mRNA produced by element A, and the dashed-dotted line the number of mRNA 

molecules produced by initiation. 

(B) Mean number of Kox20 proteins with the same color code as in A. 

(C) Bimodal probability distribution of the number of Krox20 proteins at the end of 

the simulation with the color code from A. 

(D) Probabilities to find element A in state  at the end of the simulation. (E-G) 

Heat-maps of the time evolution of the probability distributions 

€ 

p( ˆ n ,t) (densities) for 

€ 

β = 0.06, 

€ 

β = 0.13 and

€ 

β = 0.4 .  Red color represents a high probability, blue a low 

probability. 

(H) Ratio of the probabilities  at time 

€ 

tI = 500 min in heterozygous (

€ 

ΦA = 0.18 min−1) and wild type condition ( ) as a function of . The 

probability  in the heterozygous condition is shown in panel D. 

(I) Time evolution of the mean number of Krox20 mRNA molecules for various . 

The solid lines represent the total number of mRNA molecules, the dashed lines the 

number of mRNA produced by element A, and the dashed-dotted line the number of 

mRNA molecules produced by initiation(due to the scaling and , the 

initiation curves does not change with ). 

(J) Probability distribution of the number of Krox20 proteins at the end of the 

simulation. 
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Supplementary Figure S7 (related to ST, section 3). Analysis of the initiation 

process and of the initial condition in wild type situation. 
(A-D) Analysis of the initiation strength. The figures display results obtained from 

simulations of ST eq. 7 for the wild type production rate 

€ 

ΦA = 0.36 min−1, 

€ 

tI = 80 min

, , 

€ 

ΦI = χΦA  and variousχ. 

(A) Time evolution of the mean numbers of Krox20 mRNA molecules. The solid lines 

are the total numbers of mRNA molecules, the dashed lines the numbers of mRNA 

produced by element A, and the dashed-dotted lines the numbers of mRNA produced 

by initiation. 

(B) Probability to find element A in state  at the end of the simulation. 

(C) Probability distribution of the numbers of Krox20 proteins at the end of the 

simulation with the same color code as in A. 

(D) Probability distributions from C rescaled by their peak values.  

(E-H) Analysis of the initiation time. The figures display results obtained with 

€ 

ΦA = 0.36 min−1, ,  and various . 

(E) Time evolution of the mean number of Krox20 mRNA molecules. 

(F) Time evolution of the mean numbers of Krox20 proteins. 

(G) Probability to find element A in state  at the end of the simulation. 

(H) Probability distribution of the number of Krox20 proteins at the end of the 

simulation rescaled by their peak values.  

(I-J) Analysis of the initial condition. The figures displays the state probabilities  

at time 

€ 

tI = 500 min obtained  with , 

€ 

ΦA = 0.36 min−1. 

(I) Variations the initial number of mRNA molecules  with zero initial Krox20 

proteins . 

(J) Variation of the initial number of Krox20 proteins  with zero initial Krox20 

mRNA .  
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Supplementary Figure S8 (related to ST, section 3). Variation of the 

cooperativity coefficients , the synergy coefficients and the number of 

Krox20binding sites.  

(A) Comparison of 

€ 

f (βn) computed from eq. 38 ( ) with wild type 

  and  (black solid line), in situations of no 

cooperativity modeled with  (dashed lines). The intersections with the 

dotted line are the steady states of the deterministic model. 

(B) Separatrix for the situations depicted in A. 

(C) Comparison of 

€ 

f (βn) in presence or absence of cooperativity and/or synergy. 

The no-cooperativity situation is computed with  and the no-synergy 

with 

€ 

ξs = (0,1,1,1,1). 

(D) Steady state probability to find element A in state  (ST eq. 4) obtained from a 

simulation with cooperativity but no synergy. 

(E) Steady state probability obtained from a simulation with no cooperativity and no 

synergy. 

(F) Comparison of 

€ 

f (βn) computed with 4 (black line) and 3 (red line) element A 

binding sites (with cooperativity and synergy). 

(G) Comparison of 

€ 

f (βn) for various number of element A binding sites with 

cooperativity and no synergy. 
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Supplementary Figure S9 (related to Figure 6). Simulation of the bimodal cell 

distribution observed with the reporter gene in even-numbered rhombomeres. 
We modified the model to introduce the Tg(cA:h2b-cherry) transgene, and to take into 

account the stability of the Cherry and the possible different accessibilities of element 

A in the transgene and in its endogenous location. (A-C) Numerical simulations of the 

cell distributions based on the number of Cherry proteins were performed with the 

indicated parameters: ΦI is the initiation production rate of krox20 mRNA, βCherry and 

βKrox20 reflect the different accessibilities of Krox20 to exogenous (in the Tg(cA:h2b-

mcherry) transgene) and endogenous element A, respectively. (D-F) Simulations of 

the cell distributions according to the number of Krox20 proteins, performed with the 

indicated parameters (same as in A-C, respectively). Three types of cell populations 

are observed with the following characteristics. 0: no expression of Cherry or Krox20; 

1: moderate-level expression of Cherry and no expression of Krox20; 2: high-level 

expression of both Cherry and Krox20. The simulations reproduce two features 

observed experimentally. i) Population 2, which corresponds to experimental peak 2 

in Fig. 6H, is translated towards higher levels of Cherry upon increasing initiation 

level ΦI (compare A and B), whereas the position of the Krox20 high expression peak 

is unaffected (compare D with E). The shift of population 2 results from the high 

stability of Cherry compared to Krox20, which leads to accumulation of Cherry; ii) 

population 1, which corresponds to experimental peak 1 in Fig. 6H, comprises cells 

that have accumulated Cherry without successful activation of the Krox20 

autoregulatory loop. This situation happens when the parameter βCherry is higher than 
βKrox20, reflecting a better accessibility of Krox20 to element A in the transgenic 

configuration compared to the endogenous locus. This effect is further amplified by 

the stability of the Cherry protein. 
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Supplementary Figure S10 (related to Figure 7A). Scenarios for the decay of 

Krox20 expression. 
(A-F) Simulations of the time evolution of the level of Krox20 mRNA following a 

stimulation with the same parameters as Fig. 4A, but with the indicated modification 

of a specific parameter at t = 250 min. Modification of β is the only one leading to a 

linear-like decrease as observed experimentally (see also Fig. 7A). 



Supplementary Table S1

A

B

s=[0, 1, 2, 3, 4]
Number of Krox20 mRNA produced m
Number of Krox20 proteins produced n

Variable

States of element A

Symbol

(A) Variables of the model.
(B) Parameters of the model.

Number of Krox20-binding sites

Fractional binding rate �s= [�1, �2, �3, �4, 0]                 
= �.[1, 1, 1, 1, 0] min-1

Fractional unbinding rate �s= [0, �1, �2, �3, �4]                                               
= �/�.[0, 1/�1, 1/�2, 1/�3, 1/�4] min-1

Production rate during initiation �I mRNA/min/allele
Duration of initiation phase tI min
Fractional production rate of A �A,s = �A .� s mRNA/min/allele
Translation rate � protein/mRNA/min
Degradation rate of Krox20 mRNA � min-1

Degradation rate of Krox20 proteins � min-1

Parameter Symbol Estimated/Fitted value 
(endogenous situation) 

Unit

0.57
1/65
1/60

4

1. [1, 1, 1, 1, 0]

0.13
80
0.18 [0, 0, 0, 0.23, 1]

1/0.2 [0, 1/378, 1/4.3, 1/14.1, 1/3.3]



Supplementary Table S2

A

B

Allele
F 5' ACGAATGTCTATTTGTAGGTCCCAGGC 3'
R 5' CAACCACGCTCAATGTTTTC 3'
F 5' CGCAGTGCCGTCCTCAAAGAGA 3'
R 5' CAACCACGCTCAATGTTTTC 3'
F 5' GTAGAAGGTGGCGCGAAGGGGC 3'
R 5' CCACACTGGAAGCTCGGGTATTG 3'
F 5' GCGAGTTTCCTTGAAAGGAGC 3'
R 5' CAACCACGCTCAATGTTTTC 3'

PCR Primers

Krox20NA*AK

Krox20A*

Krox20NA

Krox20�A

F 5' ATTTGCTCCTCGCACACC 3'
R 5' CTGAGAAGCCTGTCTTTAACTACTG 3'

cA::Krox20*HA

Site

K6 5'-CTCTGTACTTGTAGGAGGTTA-3'

K7 5’-CTCTGTACGTGTGGGAGGTTA-3’

K5 5’-CTCTGTACGTGTGGGCTGTTA-3’

K2 5’-CTCTGTACGAGTAGGAGGTTA-3’

K3 5'-CTCTGTACAAGGAGGTGGTTA-3'

Competitor oligonucleotides                   

K1 5'-CTCTGTACAAGGGTGGAGTTA-3'

K4 5'-CTCTGTACTAGGAGGCAGTTA-3'

(A) Sequences of the PCR primers used for genotyping the indicated alleles.
(B) Sequences of the oligonucleotide competitors used in the EMSA experi-
ments. The putative Krox20 binding sites are underlined.

F 5' GAGCGCAGCCTTCCAGAAGC 3'
R 5' TTGACCCCGCACAGGTAGGC 3'

r2 HPAP



 41 

 
Supplementary References 
 
Bokes P, King JR, Wood ATA & Loose M (2012a) Exact and approximate 

distributions of protein and mRNA levels in the low-copy regime of gene 
expression. J Math Biol 64: 829–854 

Bokes P, King JR, Wood ATA & Loose M (2012b) Multiscale stochastic modelling 
of gene expression. J Math Biol 65: 493–520 

Gillespie DT (2005) A general method for numerically simulating the stochastic time 
evolution of coupled chemical reactions. Journal of computational physics 

Gunawardena J (2005) Multisite protein phosphorylation makes a good threshold but 
can be a poor switch. Proc Natl Acad Sci USA 102: 14617–14622 

Ramos AF, Innocentini GCP & Hornos JEM (2011) Exact time-dependent solutions 
for a self-regulating gene. Phys Rev E Stat Nonlin Soft Matter Phys 83: 062902 

Reingruber J, Abad E & Holcman D (2009) Narrow escape time to a structured target 
located on the boundary of a microdomain. J Chem Phys 130: 094909 

Schuss Z (1980) Theory and applications of stochastic differential equations John 
Wiley & Sons Inc 

Schuss Z (2010) Theory and applications of stochastic processes. 

Schuss Z, Singer A & Holcman D (2007) The narrow escape problem for diffusion in 
cellular microdomains. Proc Natl Acad Sci USA 104: 16098–16103 

Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W & 
Selbach M (2011) Global quantification of mammalian gene expression control. 
Nature 473: 337–342 

Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W & 
Selbach M (2013) Corrigendum: Global quantification of mammalian gene 
expression control. Nature 495: 126–127 

Sidje RB (1998) Expokit: a software package for computing matrix exponentials. 
ACM Transactions on Mathematical Software (TOMS) 

Thattai M & van Oudenaarden A (2001) Intrinsic noise in gene regulatory networks. 
Proc Natl Acad Sci USA 98: 8614–8619 

Voiculescu O, Taillebourg E, Pujades C, Kress C, Buart S, Charnay P & Schneider-
Maunoury S (2001) Hindbrain patterning: Krox20 couples segmentation and 
specification of regional identity. Development 128: 4967–4978 

 

 


